Evaluation of Insulin Medium or Chondrogenic Medium on Proliferation and Chondrogenesis of ATDC5 Cells

نویسندگان

  • Yongchang Yao
  • Zhichen Zhai
  • Yingjun Wang
چکیده

BACKGROUND The ATDC5 cell line is regarded as an excellent cell model for chondrogenesis. In most studies with ATDC5 cells, insulin medium (IM) was used to induce chondrogenesis while chondrogenic medium (CM), which was usually applied in chondrogenesis of mesenchymal stem cells (MSCs), was rarely used for ATDC5 cells. This study was mainly designed to investigate the effect of IM, CM, and growth medium (GM) on chondrogenesis of ATDC5 cells. METHODS ATDC5 cells were, respectively, cultured in IM, CM, and GM for a certain time. Then the proliferation and the chondrogenesis progress of cells in these groups were analyzed. RESULTS Compared with CM and GM, IM promoted the proliferation of cells significantly. CM was effective for enhancement of cartilage specific markers, while IM induced the cells to express endochondral ossification related genes. Although GAG deposition per cell in CM group was significantly higher than that in IM and GM groups, the total GAG contents in IM group were the most. CONCLUSION This study demonstrated that CM focused on induction of chondrogenic differentiation while IM was in favor of promoting proliferation and expression of endochondral ossification related genes. Combinational use of these two media would be more beneficial to bone/cartilage repair.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyaluronic acid enhances the effect of the PAMPS/PDMAAm double-network hydrogel on chondrogenic differentiation of ATDC5 cells

BACKGROUND A double-network (DN) gel, which was composed of poly-(2-Acrylamido-2-methylpropanesulfonic acid) and poly-(N,N'-dimethyl acrylamide) (PAMPS/PDMAAm), has the potential to induce chondrogenesis both in vitro and in vivo. The present study investigated whether DN gel induced chondrogenic differentiation of ATDC5 cells in a maintenance medium without insulin, and whether supplementation...

متن کامل

Comparison of the efficacy of Piascledine and transforming growth factor β1 on chondrogenic differentiation of human adipose-derived stem cells in fibrin and fibrin-alginate scaffolds

Objective(s):The aim of this study was to compare the chondrogenic induction potential of Piascledine and TGF-β1 on adipose-derived stem cells (ADSCs) in fibrin and fibrin-alginate scaffolds.  Materials and Methods: Human subcutaneous adipose tissues were harvested from three patients who were scheduled to undergo liposuction. Isolated ADSCs were proliferated in a culture medium. Then, the cell...

متن کامل

Ascorbate-enhanced chondrogenesis of ATDC5 cells.

The ATDC5 cell line exhibits the multistep chondrogenic differentiation observed during endochondral bone formation. However, it takes up to two months to complete the process of cell expansion, insulin addition to promote differentiation and further changes in culture conditions effectively to induce hypertrophy. We sought to produce consistent chondrogenesis with significant hypertrophic diff...

متن کامل

Designing of Human Cartilage Tissue, by Differentiation of Adipose-Derived Stem Cells With BMP-6 in Alginate Scaffold

Purpose: In the present study the effect of BMP-6 was investigated on chondrogenesis of adiposederived stem cells. Materials and Methods: Mesenchymal stem cells derived from subcutaneous adipose tissue were cultured on alginate scaffold to induce chondrogenesis in experimental group, with chondrogenic medium having BMP-6 growth factor for 3 weeks. In control group medium without BMP-6 was appli...

متن کامل

Proper expression of helix-loop-helix protein Id2 is important to chondrogenic differentiation of ATDC5 cells.

The process of chondrogenesis can be mimicked in vitro by insulin treatment of mouse ATDC5 chondroprogenitor cells. To identify novel factors that are involved in the control of chondrogenesis, we carried out a large-scale screening through retroviral insertion mutagenesis and isolated a fast-growing ATDC5 clone incapable of chondrogenic differentiation. Inverse-PCR analysis of this clone revea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014